Robustness evaluation of deep neural networks with provable guarantees
<p>This thesis presents methodologies to guarantee the robustness of deep neural networks, thus facilitating the deployment of deep learning techniques in safety-critical real-world systems. We study the maximum safe radius of a network with respect to an input, such that all the points within...
Hlavní autor: | Wu, M |
---|---|
Další autoři: | Kwiatkowska, M |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2020
|
Témata: |
Podobné jednotky
-
Global robustness evaluation of deep neural networks with provable guarantees for the Hamming distance
Autor: Ruan, W, a další
Vydáno: (2019) -
Training-free neural active learning with initialization robustness guarantees
Autor: Singh, Jasraj
Vydáno: (2023) -
Safety verification for deep neural networks with provable guarantees
Autor: Kwiatkowska, M
Vydáno: (2019) -
Reachability analysis of deep neural networks with provable guarantees
Autor: Ruan, W, a další
Vydáno: (2018) -
Safety and robustness for deep learning with provable guarantees (keynote)
Autor: Kwiatkowska, M
Vydáno: (2019)