Learning attentional policies for tracking and recognition in video with deep networks
We propose a novel attentional model for simultaneous object tracking and recognition that is driven by gaze data. Motivated by theories of the human perceptual system, the model consists of two interacting pathways: ventral and dorsal. The ventral pathway models object appearance and classification...
Päätekijät: | Bazzani, L, Freitas, N, Larochelle, H, Murino, V, Ting, J |
---|---|
Aineistotyyppi: | Conference item |
Julkaistu: |
ACM
2011
|
Samankaltaisia teoksia
-
Learning where to attend with deep architectures for image tracking
Tekijä: Denil, M, et al.
Julkaistu: (2012) -
Learning Where to Attend with Deep Architectures for Image Tracking
Tekijä: Denil, M, et al.
Julkaistu: (2012) -
Object Tracking in RGB-T Videos Using Modal-Aware Attention Network and Competitive Learning
Tekijä: Hui Zhang, et al.
Julkaistu: (2020-01-01) -
Radar Human Activity Recognition with an Attention-Based Deep Learning Network
Tekijä: Sha Huan, et al.
Julkaistu: (2023-03-01) -
Context-Aware Attention Network for Human Emotion Recognition in Video
Tekijä: Xiaodong Liu, et al.
Julkaistu: (2020-01-01)