Time-independent gravitational fields in the BGK scheme for hydrodynamics

We incorporate a time-independent gravitational field into the BGK scheme for numerical hydrodynamics. In the BGK scheme the gas evolves via an approximation to the collisional Boltzmann equation, namely the Bhatnagar-Gross-Krook (BGK) equation. Time-dependent hydrodynamical fluxes are computed from...

Celý popis

Podrobná bibliografie
Hlavní autoři: Slyz, A, Prendergast, K
Médium: Journal article
Jazyk:English
Vydáno: 1999
Popis
Shrnutí:We incorporate a time-independent gravitational field into the BGK scheme for numerical hydrodynamics. In the BGK scheme the gas evolves via an approximation to the collisional Boltzmann equation, namely the Bhatnagar-Gross-Krook (BGK) equation. Time-dependent hydrodynamical fluxes are computed from local solutions of the BGK equation. By accounting for particle collisions, the fundamental mechanism for generating dissipation in gas flow, a scheme based on the BGK equation gives solutions to the Navier-Stokes equations: the fluxes carry both advective and dissipative terms. We perform numerical experiments in both 1D Cartesian geometries and axisymmetric cylindrical coordinates.