Extending the generalised Pareto distribution for novelty detection in high-dimensional spaces
Novelty detection involves the construction of a “model of normality”, and then classifies test data as being either “normal” or “abnormal” with respect to that model. For this reason, it is often termed one-class classification. The approach is suitable for cases in which examples of “normal” behav...
Päätekijät: | Clifton, D, Clifton, L, Hugueny, S, Tarassenko, L |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Springer US
2013
|
Samankaltaisia teoksia
-
PINNING THE TAIL ON THE DISTRIBUTION: A MULTIVARIATE EXTENSION TO THE GENERALISED PARETO DISTRIBUTION
Tekijä: Clifton, D, et al.
Julkaistu: (2011) -
Novelty detection with multivariate extreme value statistics
Tekijä: Clifton, D, et al.
Julkaistu: (2010) -
An extreme function theory for novelty detection
Tekijä: Clifton, D, et al.
Julkaistu: (2012) -
A COMPARISON OF APPROACHES TO MULTIVARIATE EXTREME VALUE THEORY FOR NOVELTY DETECTION
Tekijä: Clifton, D, et al.
Julkaistu: (2009) -
Novelty detection with multivariate extreme value theory, part I: A numerical approach to multimodal estimation
Tekijä: Clifton, D, et al.
Julkaistu: (2009)