Extending the generalised Pareto distribution for novelty detection in high-dimensional spaces
Novelty detection involves the construction of a “model of normality”, and then classifies test data as being either “normal” or “abnormal” with respect to that model. For this reason, it is often termed one-class classification. The approach is suitable for cases in which examples of “normal” behav...
Principais autores: | Clifton, D, Clifton, L, Hugueny, S, Tarassenko, L |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Springer US
2013
|
Registros relacionados
-
PINNING THE TAIL ON THE DISTRIBUTION: A MULTIVARIATE EXTENSION TO THE GENERALISED PARETO DISTRIBUTION
por: Clifton, D, et al.
Publicado em: (2011) -
Novelty detection with multivariate extreme value statistics
por: Clifton, D, et al.
Publicado em: (2010) -
An extreme function theory for novelty detection
por: Clifton, D, et al.
Publicado em: (2012) -
A COMPARISON OF APPROACHES TO MULTIVARIATE EXTREME VALUE THEORY FOR NOVELTY DETECTION
por: Clifton, D, et al.
Publicado em: (2009) -
Novelty detection with multivariate extreme value theory, part I: A numerical approach to multimodal estimation
por: Clifton, D, et al.
Publicado em: (2009)