Rethinking visual prompting for multimodal large language models with external knowledge
In recent years, multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets, enabling them to generally understand images well. However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in tex...
Автори: | Lin, Y, Li, Y, Chen, D, Xu, W, Clark, R, Torr, P, Yuan, L |
---|---|
Формат: | Internet publication |
Мова: | English |
Опубліковано: |
2024
|
Схожі ресурси
Схожі ресурси
-
Prompting Large Language Models with Knowledge-Injection for Knowledge-Based Visual Question Answering
за авторством: Zhongjian Hu, та інші
Опубліковано: (2024-09-01) -
Knowledge graph construction for heart failure using large language models with prompt engineering
за авторством: Tianhan Xu, та інші
Опубліковано: (2024-07-01) -
Prompt Optimization in Large Language Models
за авторством: Antonio Sabbatella, та інші
Опубліковано: (2024-03-01) -
CAT: enhancing multimodal large language model to answer questions in dynamic audio-visual scenarios
за авторством: Ye, Q, та інші
Опубліковано: (2024) -
Review of large vision models and visual prompt engineering
за авторством: Jiaqi Wang, та інші
Опубліковано: (2023-11-01)