On Ryser's conjecture
Motivated by an old problem known as Ryser's Conjecture, we prove that for r = 4 and r = 5, there exists ∈ > 0 such that every r-partite r-uniform hypergraph H has a cover of size at most (r - ∈)v(H), where v(H) denotes the size of a largest matching in H.
主要な著者: | Haxell, P, Scott, A |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2012
|
類似資料
-
A note on majorization transforms and Ryser’s
algorithm
著者:: Dahl Geir
出版事項: (2013-10-01) -
An Existing Problem for Symmetric Design: Bruck Ryser Chowla Theorem
著者:: Emek Demirci Akarsu, 等
出版事項: (2022-04-01) -
Conjectures analogous to the Collatz conjecture
著者:: Fabio Briscese, 等
出版事項: (2024-02-01) -
Proof of the Kalai-Meshulam conjecture
著者:: Chudnovsky, M, 等
出版事項: (2020) -
A counterexample to the coarse Menger conjecture
著者:: Nguyen, T, 等
出版事項: (2025)