On Ryser's conjecture
Motivated by an old problem known as Ryser's Conjecture, we prove that for r = 4 and r = 5, there exists ∈ > 0 such that every r-partite r-uniform hypergraph H has a cover of size at most (r - ∈)v(H), where v(H) denotes the size of a largest matching in H.
Principais autores: | Haxell, P, Scott, A |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2012
|
Registros relacionados
-
A note on majorization transforms and Ryser’s
algorithm
por: Dahl Geir
Publicado em: (2013-10-01) -
An Existing Problem for Symmetric Design: Bruck Ryser Chowla Theorem
por: Emek Demirci Akarsu, et al.
Publicado em: (2022-04-01) -
Conjectures analogous to the Collatz conjecture
por: Fabio Briscese, et al.
Publicado em: (2024-02-01) -
Proof of the Kalai-Meshulam conjecture
por: Chudnovsky, M, et al.
Publicado em: (2020) -
A counterexample to the coarse Menger conjecture
por: Nguyen, T, et al.
Publicado em: (2025)