Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends...
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
American Chemical Society
2021
|
_version_ | 1797090403853271040 |
---|---|
author | Abramsson, ML Sahin, C Hopper, JTS Branca, RMM Danielsson, J Xu, M Chandler, SA Österlund, N Ilag, LL Leppert, A Costeira-Paulo, J Lang, L Teilum, K Laganowsky, A Benesch, JLP Oliveberg, M Robinson, CV Marklund, EG Allison, TM Winther, JR Landreh, M |
author_facet | Abramsson, ML Sahin, C Hopper, JTS Branca, RMM Danielsson, J Xu, M Chandler, SA Österlund, N Ilag, LL Leppert, A Costeira-Paulo, J Lang, L Teilum, K Laganowsky, A Benesch, JLP Oliveberg, M Robinson, CV Marklund, EG Allison, TM Winther, JR Landreh, M |
author_sort | Abramsson, ML |
collection | OXFORD |
description | In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase. |
first_indexed | 2024-03-07T03:18:06Z |
format | Journal article |
id | oxford-uuid:b67f3ca9-71db-4c3a-82a1-6b33b46f423d |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T03:18:06Z |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | dspace |
spelling | oxford-uuid:b67f3ca9-71db-4c3a-82a1-6b33b46f423d2022-03-27T04:41:28ZCharge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometryJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b67f3ca9-71db-4c3a-82a1-6b33b46f423dEnglishSymplectic ElementsAmerican Chemical Society2021Abramsson, MLSahin, CHopper, JTSBranca, RMMDanielsson, JXu, MChandler, SAÖsterlund, NIlag, LLLeppert, ACosteira-Paulo, JLang, LTeilum, KLaganowsky, ABenesch, JLPOliveberg, MRobinson, CVMarklund, EGAllison, TMWinther, JRLandreh, MIn solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase. |
spellingShingle | Abramsson, ML Sahin, C Hopper, JTS Branca, RMM Danielsson, J Xu, M Chandler, SA Österlund, N Ilag, LL Leppert, A Costeira-Paulo, J Lang, L Teilum, K Laganowsky, A Benesch, JLP Oliveberg, M Robinson, CV Marklund, EG Allison, TM Winther, JR Landreh, M Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
title | Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
title_full | Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
title_fullStr | Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
title_full_unstemmed | Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
title_short | Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
title_sort | charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry |
work_keys_str_mv | AT abramssonml chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT sahinc chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT hopperjts chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT brancarmm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT danielssonj chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT xum chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT chandlersa chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT osterlundn chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT ilagll chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT lepperta chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT costeirapauloj chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT langl chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT teilumk chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT laganowskya chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT beneschjlp chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT olivebergm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT robinsoncv chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT marklundeg chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT allisontm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT wintherjr chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry AT landrehm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry |