Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry

In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends...

Full description

Bibliographic Details
Main Authors: Abramsson, ML, Sahin, C, Hopper, JTS, Branca, RMM, Danielsson, J, Xu, M, Chandler, SA, Österlund, N, Ilag, LL, Leppert, A, Costeira-Paulo, J, Lang, L, Teilum, K, Laganowsky, A, Benesch, JLP, Oliveberg, M, Robinson, CV, Marklund, EG, Allison, TM, Winther, JR, Landreh, M
Format: Journal article
Language:English
Published: American Chemical Society 2021
_version_ 1797090403853271040
author Abramsson, ML
Sahin, C
Hopper, JTS
Branca, RMM
Danielsson, J
Xu, M
Chandler, SA
Österlund, N
Ilag, LL
Leppert, A
Costeira-Paulo, J
Lang, L
Teilum, K
Laganowsky, A
Benesch, JLP
Oliveberg, M
Robinson, CV
Marklund, EG
Allison, TM
Winther, JR
Landreh, M
author_facet Abramsson, ML
Sahin, C
Hopper, JTS
Branca, RMM
Danielsson, J
Xu, M
Chandler, SA
Österlund, N
Ilag, LL
Leppert, A
Costeira-Paulo, J
Lang, L
Teilum, K
Laganowsky, A
Benesch, JLP
Oliveberg, M
Robinson, CV
Marklund, EG
Allison, TM
Winther, JR
Landreh, M
author_sort Abramsson, ML
collection OXFORD
description In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
first_indexed 2024-03-07T03:18:06Z
format Journal article
id oxford-uuid:b67f3ca9-71db-4c3a-82a1-6b33b46f423d
institution University of Oxford
language English
last_indexed 2024-03-07T03:18:06Z
publishDate 2021
publisher American Chemical Society
record_format dspace
spelling oxford-uuid:b67f3ca9-71db-4c3a-82a1-6b33b46f423d2022-03-27T04:41:28ZCharge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometryJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b67f3ca9-71db-4c3a-82a1-6b33b46f423dEnglishSymplectic ElementsAmerican Chemical Society2021Abramsson, MLSahin, CHopper, JTSBranca, RMMDanielsson, JXu, MChandler, SAÖsterlund, NIlag, LLLeppert, ACosteira-Paulo, JLang, LTeilum, KLaganowsky, ABenesch, JLPOliveberg, MRobinson, CVMarklund, EGAllison, TMWinther, JRLandreh, MIn solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
spellingShingle Abramsson, ML
Sahin, C
Hopper, JTS
Branca, RMM
Danielsson, J
Xu, M
Chandler, SA
Österlund, N
Ilag, LL
Leppert, A
Costeira-Paulo, J
Lang, L
Teilum, K
Laganowsky, A
Benesch, JLP
Oliveberg, M
Robinson, CV
Marklund, EG
Allison, TM
Winther, JR
Landreh, M
Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
title Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
title_full Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
title_fullStr Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
title_full_unstemmed Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
title_short Charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
title_sort charge engineering reveals the roles of ionizable side chains in electrospray ionization mass spectrometry
work_keys_str_mv AT abramssonml chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT sahinc chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT hopperjts chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT brancarmm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT danielssonj chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT xum chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT chandlersa chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT osterlundn chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT ilagll chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT lepperta chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT costeirapauloj chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT langl chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT teilumk chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT laganowskya chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT beneschjlp chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT olivebergm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT robinsoncv chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT marklundeg chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT allisontm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT wintherjr chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry
AT landrehm chargeengineeringrevealstherolesofionizablesidechainsinelectrosprayionizationmassspectrometry