Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas

As part the DTE2 campaign in the JET tokamak, we conducted a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses, type-I ELMy H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total p...

Full description

Bibliographic Details
Main Authors: Schneider, P, Angioni, C, Auriemma, F, Bonanomi, N, Görler, T, Henriques, R, Horvath, L, King, D, Lorenzini, R, Nyström, H, Maslov, M, Ruiz, J, Szepesi, G, Challis, C, Chomiczewska, A, Delabie, E, Fontdecaba, J, Frassinetti, L, Garcia, J, Giroud, C, Hillesheim, J, Hobirk, J, Kappatou, A, Keeling, D
Format: Journal article
Language:English
Published: IOP Publishing 2023
_version_ 1826313717072003072
author Schneider, P
Angioni, C
Auriemma, F
Bonanomi, N
Görler, T
Henriques, R
Horvath, L
King, D
Lorenzini, R
Nyström, H
Maslov, M
Ruiz, J
Szepesi, G
Challis, C
Chomiczewska, A
Delabie, E
Fontdecaba, J
Frassinetti, L
Garcia, J
Giroud, C
Hillesheim, J
Hobirk, J
Kappatou, A
Keeling, D
author_facet Schneider, P
Angioni, C
Auriemma, F
Bonanomi, N
Görler, T
Henriques, R
Horvath, L
King, D
Lorenzini, R
Nyström, H
Maslov, M
Ruiz, J
Szepesi, G
Challis, C
Chomiczewska, A
Delabie, E
Fontdecaba, J
Frassinetti, L
Garcia, J
Giroud, C
Hillesheim, J
Hobirk, J
Kappatou, A
Keeling, D
author_sort Schneider, P
collection OXFORD
description As part the DTE2 campaign in the JET tokamak, we conducted a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses, type-I ELMy H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from βN=1.0 to 3.0. We investigated the pedestal and core isotope mass dependencies using this extensive data set. The pedestal shows a strong mass dependence on the density, which influences the core due to the strong coupling between both plasma regions. To better understand the causes for the observed isotope mass dependence in the pedestal, we analysed the interplay between heat and particle transport and the edge localised mode (ELM) stability. For this purpose, we developed a dynamic ELM cycle model with basic transport assumptions and a realistic neutral penetration. The temporal evolution and resulting ELM frequency introduce an additional experimental constraint that conventional quasi-stationary transport analysis cannot provide. Our model shows that a mass dependence in the ELM stability or in the transport alone cannot explain the observations. One requires a mass dependence in the ELM stability as well as one in the particle sources. The core confinement time increases with pedestal pressure for all isotope masses due to profile stiffness and electromagnetic turbulence stabilisation. Interestingly, T and D-T plasmas show an improved core confinement time compared to H and D plasmas even for matched pedestal pressures. For T, this improvement is largely due to the unique pedestal composition of higher densities and lower temperatures than H and D. With a reduced gyroBohm factor at lower temperatures, more turbulent drive in the form of steeper gradients is required to transport the same amount of heat. This picture is supported by quasilinear flux-driven modelling using TGLF-SAT2 within Astra. With the experimental boundary condition TGLF-SAT2 predicts the core profiles well for gyroBohm heat fluxes >15 , however, overestimates the heat and particle transport closer to the turbulent threshold.
first_indexed 2024-09-25T04:19:21Z
format Journal article
id oxford-uuid:b6af5d3a-5220-45cb-82b5-838e05f352b3
institution University of Oxford
language English
last_indexed 2024-09-25T04:19:21Z
publishDate 2023
publisher IOP Publishing
record_format dspace
spelling oxford-uuid:b6af5d3a-5220-45cb-82b5-838e05f352b32024-07-29T19:36:10ZIsotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmasJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b6af5d3a-5220-45cb-82b5-838e05f352b3EnglishJisc Publications RouterIOP Publishing2023Schneider, PAngioni, CAuriemma, FBonanomi, NGörler, THenriques, RHorvath, LKing, DLorenzini, RNyström, HMaslov, MRuiz, JSzepesi, GChallis, CChomiczewska, ADelabie, EFontdecaba, JFrassinetti, LGarcia, JGiroud, CHillesheim, JHobirk, JKappatou, AKeeling, DAs part the DTE2 campaign in the JET tokamak, we conducted a parameter scan in T and D-T complementing existing pulses in H and D. For the different main ion masses, type-I ELMy H-modes at fixed plasma current and magnetic field can have the pedestal pressure varying by a factor of 4 and the total pressure changing from βN=1.0 to 3.0. We investigated the pedestal and core isotope mass dependencies using this extensive data set. The pedestal shows a strong mass dependence on the density, which influences the core due to the strong coupling between both plasma regions. To better understand the causes for the observed isotope mass dependence in the pedestal, we analysed the interplay between heat and particle transport and the edge localised mode (ELM) stability. For this purpose, we developed a dynamic ELM cycle model with basic transport assumptions and a realistic neutral penetration. The temporal evolution and resulting ELM frequency introduce an additional experimental constraint that conventional quasi-stationary transport analysis cannot provide. Our model shows that a mass dependence in the ELM stability or in the transport alone cannot explain the observations. One requires a mass dependence in the ELM stability as well as one in the particle sources. The core confinement time increases with pedestal pressure for all isotope masses due to profile stiffness and electromagnetic turbulence stabilisation. Interestingly, T and D-T plasmas show an improved core confinement time compared to H and D plasmas even for matched pedestal pressures. For T, this improvement is largely due to the unique pedestal composition of higher densities and lower temperatures than H and D. With a reduced gyroBohm factor at lower temperatures, more turbulent drive in the form of steeper gradients is required to transport the same amount of heat. This picture is supported by quasilinear flux-driven modelling using TGLF-SAT2 within Astra. With the experimental boundary condition TGLF-SAT2 predicts the core profiles well for gyroBohm heat fluxes >15 , however, overestimates the heat and particle transport closer to the turbulent threshold.
spellingShingle Schneider, P
Angioni, C
Auriemma, F
Bonanomi, N
Görler, T
Henriques, R
Horvath, L
King, D
Lorenzini, R
Nyström, H
Maslov, M
Ruiz, J
Szepesi, G
Challis, C
Chomiczewska, A
Delabie, E
Fontdecaba, J
Frassinetti, L
Garcia, J
Giroud, C
Hillesheim, J
Hobirk, J
Kappatou, A
Keeling, D
Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas
title Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas
title_full Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas
title_fullStr Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas
title_full_unstemmed Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas
title_short Isotope physics of heat and particle transport with tritium in JET-ILW type-I ELMy H-mode plasmas
title_sort isotope physics of heat and particle transport with tritium in jet ilw type i elmy h mode plasmas
work_keys_str_mv AT schneiderp isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT angionic isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT auriemmaf isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT bonanomin isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT gorlert isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT henriquesr isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT horvathl isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT kingd isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT lorenzinir isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT nystromh isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT maslovm isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT ruizj isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT szepesig isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT challisc isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT chomiczewskaa isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT delabiee isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT fontdecabaj isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT frassinettil isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT garciaj isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT giroudc isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT hillesheimj isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT hobirkj isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT kappatoua isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas
AT keelingd isotopephysicsofheatandparticletransportwithtritiuminjetilwtypeielmyhmodeplasmas