Inference compilation and universal probabilistic programming
We introduce a method for using deep neural networks to amortize the cost of inference in models from the family induced by universal probabilistic programming languages, establishing a framework that combines the strengths of probabilistic programming and deep learning methods. We call what we do “...
Hlavní autoři: | Le, T, Baydin, A, Wood, F |
---|---|
Médium: | Conference item |
Vydáno: |
Journal of Machine Learning Research
2017
|
Podobné jednotky
-
Attention for inference compilation
Autor: Harvey, W, a další
Vydáno: (2022) -
Amortized rejection sampling in universal probabilistic programming
Autor: Naderiparizi, S, a další
Vydáno: (2022) -
Amortized inference and model learning for probabilistic programming
Autor: Le, TA
Vydáno: (2019) -
Probabilistic programming with programmable inference
Autor: Mansinghka, Vikash K., a další
Vydáno: (2021) -
Efficient probabilistic inference in the quest for physics beyond the standard model
Autor: Baydin, AG, a další
Vydáno: (2019)