Inference compilation and universal probabilistic programming
We introduce a method for using deep neural networks to amortize the cost of inference in models from the family induced by universal probabilistic programming languages, establishing a framework that combines the strengths of probabilistic programming and deep learning methods. We call what we do “...
Glavni autori: | Le, T, Baydin, A, Wood, F |
---|---|
Format: | Conference item |
Izdano: |
Journal of Machine Learning Research
2017
|
Slični predmeti
-
Attention for inference compilation
od: Harvey, W, i dr.
Izdano: (2022) -
Amortized rejection sampling in universal probabilistic programming
od: Naderiparizi, S, i dr.
Izdano: (2022) -
Amortized inference and model learning for probabilistic programming
od: Le, TA
Izdano: (2019) -
Probabilistic programming with programmable inference
od: Mansinghka, Vikash K., i dr.
Izdano: (2021) -
Efficient probabilistic inference in the quest for physics beyond the standard model
od: Baydin, AG, i dr.
Izdano: (2019)