Minimality of vortex solutions to Ginzburg--Landau type systems for gradient fields in the unit ball in dimension N ≥ 4
We prove that the degree-one vortex solution is the unique minimizer for the Ginzburg–Landau functional for gradient fields (that is, the Aviles–Giga model) in the unit ball $B^N$ in dimension $N \ge 4$ and with respect to its boundary value. A similar result is also prove in a model for $\mathbb{S}...
Autori principali: | Ignat, R, Mickael, N, Nguyen, LUC |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Springer Nature
2025
|
Documenti analoghi
Documenti analoghi
-
Minimality of Vortex Solutions to Ginzburg–Landau Type Systems for Gradient Fields in the Unit Ball in Dimension N ≥ 4
di: Ignat, R, et al.
Pubblicazione: (2025) -
Local minimality of RN-valued and SN-valuedGinzburg–Landau vortex solutions in the unit ball BN
di: Ignat, R, et al.
Pubblicazione: (2023) -
Uniqueness of degree-one Ginzburg-Landau vortex in the unit ball in dimensions $N \geq 7$
di: Ignat, R, et al.
Pubblicazione: (2018) -
VORTEX LIQUIDS AND THE GINZBURG–LANDAU EQUATION
di: MATTHIAS KURZKE, et al.
Pubblicazione: (2014-05-01) -
Quantitative uniqueness and vortex degree estimates for solutions of the Ginzburg-Landau equation
di: Igor Kukavica
Pubblicazione: (2000-10-01)