Minimality of vortex solutions to Ginzburg--Landau type systems for gradient fields in the unit ball in dimension N ≥ 4
We prove that the degree-one vortex solution is the unique minimizer for the Ginzburg–Landau functional for gradient fields (that is, the Aviles–Giga model) in the unit ball $B^N$ in dimension $N \ge 4$ and with respect to its boundary value. A similar result is also prove in a model for $\mathbb{S}...
المؤلفون الرئيسيون: | , , |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer Nature
2025
|
Search Result 1
Minimality of Vortex Solutions to Ginzburg–Landau Type Systems for Gradient Fields in the Unit Ball in Dimension N ≥ 4
منشور في 2025
Journal article