Limiting shape for directed percolation models
We consider directed first-passage and last-passage percolation on the nonnegative lattice Z_+^d, d\geq2, with i.i.d. weights at the vertices. Under certain moment conditions on the common distribution of the weights, the limits g(x)=lim_{n\to\infty}n^{-1}T(\lfloor nx\rfloor) exist and are constant...
Main Author: | |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2003
|
Summary: | We consider directed first-passage and last-passage percolation on the nonnegative lattice Z_+^d, d\geq2, with i.i.d. weights at the vertices. Under certain moment conditions on the common distribution of the weights, the limits g(x)=lim_{n\to\infty}n^{-1}T(\lfloor nx\rfloor) exist and are constant a.s. for x\in R_+^d, where T(z) is the passage time from the origin to the vertex z\in Z_+^d. We show that this shape function g is continuous on R_+^d, in particular at the boundaries. In two dimensions, we give more precise asymptotics for the behavior of g near the boundaries; these asymptotics depend on the common weight distribution only through its mean and variance. In addition we discuss growth models which are naturally associated to the percolation processes, giving a shape theorem and illustrating various possible types of behavior with output from simulations. |
---|