A Katznelson-Tzafriri theorem for analytic Besov functions of operators

Let T be a power-bounded operator on a Banach space X, A be a Banach algebra of bounded holomorphic functions on the unit disc D, and assume that there is a bounded functional calculus for the operator T, so there is a bounded algebra homomorphism mapping functions f ∈ A to bounded operators f(T) on...

Description complète

Détails bibliographiques
Auteurs principaux: Batty, C, Seifert, D
Format: Journal article
Langue:English
Publié: Theta Foundation 2024
_version_ 1826313924307320832
author Batty, C
Seifert, D
author_facet Batty, C
Seifert, D
author_sort Batty, C
collection OXFORD
description Let T be a power-bounded operator on a Banach space X, A be a Banach algebra of bounded holomorphic functions on the unit disc D, and assume that there is a bounded functional calculus for the operator T, so there is a bounded algebra homomorphism mapping functions f ∈ A to bounded operators f(T) on X. Theorems of Katznelson-Tzafriri type establish that limn→∞ kT n f(T)k = 0 for functions f ∈ A whose boundary functions vanish on the unitary spectrum σ(T) ∩ T of T, or sometimes satisfy a stronger assumption of spectral synthesis. We consider the case when A is the Banach algebra B(D) of analytic Besov functions on D. We prove a Katznelson-Tzafriri theorem for the B(D)-calculus which extends several previous results.
first_indexed 2024-03-07T07:21:44Z
format Journal article
id oxford-uuid:b7f733ff-6ab9-49f3-9ff4-a20f18d6e87f
institution University of Oxford
language English
last_indexed 2024-09-25T04:24:03Z
publishDate 2024
publisher Theta Foundation
record_format dspace
spelling oxford-uuid:b7f733ff-6ab9-49f3-9ff4-a20f18d6e87f2024-08-22T10:24:49ZA Katznelson-Tzafriri theorem for analytic Besov functions of operatorsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b7f733ff-6ab9-49f3-9ff4-a20f18d6e87fEnglishSymplectic ElementsTheta Foundation2024Batty, CSeifert, DLet T be a power-bounded operator on a Banach space X, A be a Banach algebra of bounded holomorphic functions on the unit disc D, and assume that there is a bounded functional calculus for the operator T, so there is a bounded algebra homomorphism mapping functions f ∈ A to bounded operators f(T) on X. Theorems of Katznelson-Tzafriri type establish that limn→∞ kT n f(T)k = 0 for functions f ∈ A whose boundary functions vanish on the unitary spectrum σ(T) ∩ T of T, or sometimes satisfy a stronger assumption of spectral synthesis. We consider the case when A is the Banach algebra B(D) of analytic Besov functions on D. We prove a Katznelson-Tzafriri theorem for the B(D)-calculus which extends several previous results.
spellingShingle Batty, C
Seifert, D
A Katznelson-Tzafriri theorem for analytic Besov functions of operators
title A Katznelson-Tzafriri theorem for analytic Besov functions of operators
title_full A Katznelson-Tzafriri theorem for analytic Besov functions of operators
title_fullStr A Katznelson-Tzafriri theorem for analytic Besov functions of operators
title_full_unstemmed A Katznelson-Tzafriri theorem for analytic Besov functions of operators
title_short A Katznelson-Tzafriri theorem for analytic Besov functions of operators
title_sort katznelson tzafriri theorem for analytic besov functions of operators
work_keys_str_mv AT battyc akatznelsontzafriritheoremforanalyticbesovfunctionsofoperators
AT seifertd akatznelsontzafriritheoremforanalyticbesovfunctionsofoperators
AT battyc katznelsontzafriritheoremforanalyticbesovfunctionsofoperators
AT seifertd katznelsontzafriritheoremforanalyticbesovfunctionsofoperators