Learning the language of software errors
We propose to use algorithms for learning deterministic finite automata (DFA), such as Angluin’s L ∗ algorithm, for learning a DFA that describes the possible scenarios under which a given program error occurs. The alphabet of this automaton is given by the user (for instance, a subset of the functi...
Principais autores: | Chockler, H, Kesseli, P, Kroenig, D, Strichman, O |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
AI Access Foundation
2020
|
Registros relacionados
-
Error Explanation with Distance Metrics
por: Groce, A, et al.
Publicado em: (2006) -
Toward a Richer Language for Describing Software Errors
por: Levitin, Samuel M.
Publicado em: (2008) -
Spoken Language Understanding Software for Language Learning
por: Hassan Alam, et al.
Publicado em: (2008-04-01) -
A framework for Satisfiability Modulo Theories.
por: Kroening, D, et al.
Publicado em: (2009) -
Efficient Computation of Recurrence Diameters
por: Kroening, D, et al.
Publicado em: (2003)