A Lipschitz metric for the Camassa–Holm equation
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is requ...
Autors principals: | Carrillo, JA, Grunert, K, Holden, H |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
Cambridge University Press
2020
|
Ítems similars
-
A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION
per: JOSÉ A. CARRILLO, et al.
Publicat: (2020-01-01) -
A Lipschitz metric for the Hunter–Saxton equation
per: Carrillo de la Plata, JA, et al.
Publicat: (2019) -
A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM
per: KATRIN GRUNERT, et al.
Publicat: (2015-01-01) -
A Note on the Generalized Camassa-Holm Equation
per: Yun Wu, et al.
Publicat: (2014-01-01) -
The Uniqueness of Strong Solutions for the Camassa-Holm Equation
per: Meng Wu, et al.
Publicat: (2013-01-01)