A Lipschitz metric for the Camassa–Holm equation
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is requ...
主要な著者: | Carrillo, JA, Grunert, K, Holden, H |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Cambridge University Press
2020
|
類似資料
-
A LIPSCHITZ METRIC FOR THE CAMASSA–HOLM EQUATION
著者:: JOSÉ A. CARRILLO, 等
出版事項: (2020-01-01) -
A Lipschitz metric for the Hunter–Saxton equation
著者:: Carrillo de la Plata, JA, 等
出版事項: (2019) -
A CONTINUOUS INTERPOLATION BETWEEN CONSERVATIVE AND DISSIPATIVE SOLUTIONS FOR THE TWO-COMPONENT CAMASSA–HOLM SYSTEM
著者:: KATRIN GRUNERT, 等
出版事項: (2015-01-01) -
A Note on the Generalized Camassa-Holm Equation
著者:: Yun Wu, 等
出版事項: (2014-01-01) -
The Uniqueness of Strong Solutions for the Camassa-Holm Equation
著者:: Meng Wu, 等
出版事項: (2013-01-01)