Mesoscopic structure features in synthetic graphite
The mesocopic structure features in the coke fillers and binding carbon regions of a synthetic graphite grade have been examined by high resolution transmission electron microscopy (TEM) and Raman spectroscopy. Within the fillers, the three-dimensional structure is composed of crystal laminae with t...
Main Authors: | , , , , , , |
---|---|
Format: | Journal article |
Izdano: |
Elsevier
2018
|
_version_ | 1826293148455796736 |
---|---|
author | März, B Jolley, K Marrow, T Zhou, Z Heggie, M Smith, R Wu, H |
author_facet | März, B Jolley, K Marrow, T Zhou, Z Heggie, M Smith, R Wu, H |
author_sort | März, B |
collection | OXFORD |
description | The mesocopic structure features in the coke fillers and binding carbon regions of a synthetic graphite grade have been examined by high resolution transmission electron microscopy (TEM) and Raman spectroscopy. Within the fillers, the three-dimensional structure is composed of crystal laminae with the basal plane dimensions (La) of hundreds nanometres, and thicknesses (Lc) of tens of nanometres. These laminae have a nearly perfect graphite structure with almost parallel c-axes, but their a–b planes are orientated randomly to form a “crazy paving” structure. A similar structure exists in the binding carbon regions, with a smaller La. Significantly bent laminae are widely seen in quinoline insoluble inclusions and the graphite regions developed around them. The La values measured by TEM are consistent with estimates from the intensity ratios of the D to G Raman peak in these regions. Atomistic modelling finds that the lowest energy interfaces in the crazy paving structure comprise 5, 6 and 7 member carbon rings. The bent laminae tend to maintain the 6 member rings, but are strained elastically. We suggest that a 7 member carbon ring leaves a cavity representing an arm-chair graphite edge contributing to the Raman spectra D peak. |
first_indexed | 2024-03-07T03:25:38Z |
format | Journal article |
id | oxford-uuid:b8ed5778-bfc6-4cb6-8e3d-dbf4241388e3 |
institution | University of Oxford |
last_indexed | 2024-03-07T03:25:38Z |
publishDate | 2018 |
publisher | Elsevier |
record_format | dspace |
spelling | oxford-uuid:b8ed5778-bfc6-4cb6-8e3d-dbf4241388e32022-03-27T04:59:29ZMesoscopic structure features in synthetic graphiteJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b8ed5778-bfc6-4cb6-8e3d-dbf4241388e3Symplectic Elements at OxfordElsevier2018März, BJolley, KMarrow, TZhou, ZHeggie, MSmith, RWu, HThe mesocopic structure features in the coke fillers and binding carbon regions of a synthetic graphite grade have been examined by high resolution transmission electron microscopy (TEM) and Raman spectroscopy. Within the fillers, the three-dimensional structure is composed of crystal laminae with the basal plane dimensions (La) of hundreds nanometres, and thicknesses (Lc) of tens of nanometres. These laminae have a nearly perfect graphite structure with almost parallel c-axes, but their a–b planes are orientated randomly to form a “crazy paving” structure. A similar structure exists in the binding carbon regions, with a smaller La. Significantly bent laminae are widely seen in quinoline insoluble inclusions and the graphite regions developed around them. The La values measured by TEM are consistent with estimates from the intensity ratios of the D to G Raman peak in these regions. Atomistic modelling finds that the lowest energy interfaces in the crazy paving structure comprise 5, 6 and 7 member carbon rings. The bent laminae tend to maintain the 6 member rings, but are strained elastically. We suggest that a 7 member carbon ring leaves a cavity representing an arm-chair graphite edge contributing to the Raman spectra D peak. |
spellingShingle | März, B Jolley, K Marrow, T Zhou, Z Heggie, M Smith, R Wu, H Mesoscopic structure features in synthetic graphite |
title | Mesoscopic structure features in synthetic graphite |
title_full | Mesoscopic structure features in synthetic graphite |
title_fullStr | Mesoscopic structure features in synthetic graphite |
title_full_unstemmed | Mesoscopic structure features in synthetic graphite |
title_short | Mesoscopic structure features in synthetic graphite |
title_sort | mesoscopic structure features in synthetic graphite |
work_keys_str_mv | AT marzb mesoscopicstructurefeaturesinsyntheticgraphite AT jolleyk mesoscopicstructurefeaturesinsyntheticgraphite AT marrowt mesoscopicstructurefeaturesinsyntheticgraphite AT zhouz mesoscopicstructurefeaturesinsyntheticgraphite AT heggiem mesoscopicstructurefeaturesinsyntheticgraphite AT smithr mesoscopicstructurefeaturesinsyntheticgraphite AT wuh mesoscopicstructurefeaturesinsyntheticgraphite |