Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel

<p>Neuromorphic computing has the potential to address the inherent limitations of conventional integrated circuit technology, ranging from perception, pattern recognition, to memory and decision-making (&nbsp;<cite><em>Acc. Chem. Res.</em></cite>&nbsp;2019,&...

Full description

Bibliographic Details
Main Authors: Ma, C, Chen, H, Yengel, E, Faber, H, Khan, JI, Tang, M-C, Li, R, Loganathan, K, Lin, Y, Zhang, W, Laquai, F, McCulloch, I, Anthopoulos, TD
Format: Journal article
Language:English
Published: American Chemical Society 2021
_version_ 1826308706505064448
author Ma, C
Chen, H
Yengel, E
Faber, H
Khan, JI
Tang, M-C
Li, R
Loganathan, K
Lin, Y
Zhang, W
Laquai, F
McCulloch, I
Anthopoulos, TD
author_facet Ma, C
Chen, H
Yengel, E
Faber, H
Khan, JI
Tang, M-C
Li, R
Loganathan, K
Lin, Y
Zhang, W
Laquai, F
McCulloch, I
Anthopoulos, TD
author_sort Ma, C
collection OXFORD
description <p>Neuromorphic computing has the potential to address the inherent limitations of conventional integrated circuit technology, ranging from perception, pattern recognition, to memory and decision-making (&nbsp;<cite><em>Acc. Chem. Res.</em></cite>&nbsp;2019,&nbsp;<em>52</em>&nbsp;(4), 964&minus;974) (&nbsp;<cite><em>Nature</em></cite>&nbsp;2004,&nbsp;<em>431</em>&nbsp;(7010), 796&minus;803) (&nbsp;<cite><em>Nat. Nanotechnol.</em></cite>&nbsp;2013,&nbsp;<em>8</em>&nbsp;(1), 13&minus;24). Despite their low power consumption (&nbsp;<cite><em>Nano Lett.</em></cite>&nbsp;2016,&nbsp;<em>16</em>&nbsp;(11), 6724&minus;6732), traditional two-terminal memristors can perform only a single function while lacking heterosynaptic plasticity (&nbsp;<cite><em>Nanotechnology</em></cite>&nbsp;2013,&nbsp;<em>24</em>&nbsp;(38), 382001). Inspired by the unconditioned reflex, multiterminal memristive transistors (memtransistor) were developed to realize complex functions, such as multiterminal modulation and heterosynaptic plasticity (&nbsp;<cite><em>Nature</em></cite>&nbsp;2018,&nbsp;<em>554</em>, (7693), 500&minus;504). Here we combine a hybrid metal halide perovskite with an organic conjugated polymer to form heterojunction transistors that are responsive to both electrical and optical stimuli. We show that the synergistic effects of photoinduced ion migration in the perovskite and electronic transport in the polymer layers can be exploited to realize memristive functions. The device combines reversible, nonvolatile conductance modulation with large switching current ratios, high endurance, and long retention times. Using in situ scanning Kelvin probe microscopy and variable-temperature charge transport measurement, we correlate the collective effects of bias-induced and photoinduced ion migration with the heterosynaptic behavior observed in this hybrid memtransistor. The hybrid heterojunction channel concept is expected to be applicable to other material combinations making it a promising platform for deployment in innovative neuromorphic devices of the future.</p>
first_indexed 2024-03-07T07:23:20Z
format Journal article
id oxford-uuid:b91b196b-d92e-4c55-b1c3-eb3d66e1ef25
institution University of Oxford
language English
last_indexed 2024-03-07T07:23:20Z
publishDate 2021
publisher American Chemical Society
record_format dspace
spelling oxford-uuid:b91b196b-d92e-4c55-b1c3-eb3d66e1ef252022-10-25T08:38:02ZPrinted memtransistor utilizing a hybrid perovskite/organic heterojunction channelJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b91b196b-d92e-4c55-b1c3-eb3d66e1ef25EnglishSymplectic ElementsAmerican Chemical Society2021Ma, CChen, HYengel, EFaber, HKhan, JITang, M-CLi, RLoganathan, KLin, YZhang, WLaquai, FMcCulloch, IAnthopoulos, TD<p>Neuromorphic computing has the potential to address the inherent limitations of conventional integrated circuit technology, ranging from perception, pattern recognition, to memory and decision-making (&nbsp;<cite><em>Acc. Chem. Res.</em></cite>&nbsp;2019,&nbsp;<em>52</em>&nbsp;(4), 964&minus;974) (&nbsp;<cite><em>Nature</em></cite>&nbsp;2004,&nbsp;<em>431</em>&nbsp;(7010), 796&minus;803) (&nbsp;<cite><em>Nat. Nanotechnol.</em></cite>&nbsp;2013,&nbsp;<em>8</em>&nbsp;(1), 13&minus;24). Despite their low power consumption (&nbsp;<cite><em>Nano Lett.</em></cite>&nbsp;2016,&nbsp;<em>16</em>&nbsp;(11), 6724&minus;6732), traditional two-terminal memristors can perform only a single function while lacking heterosynaptic plasticity (&nbsp;<cite><em>Nanotechnology</em></cite>&nbsp;2013,&nbsp;<em>24</em>&nbsp;(38), 382001). Inspired by the unconditioned reflex, multiterminal memristive transistors (memtransistor) were developed to realize complex functions, such as multiterminal modulation and heterosynaptic plasticity (&nbsp;<cite><em>Nature</em></cite>&nbsp;2018,&nbsp;<em>554</em>, (7693), 500&minus;504). Here we combine a hybrid metal halide perovskite with an organic conjugated polymer to form heterojunction transistors that are responsive to both electrical and optical stimuli. We show that the synergistic effects of photoinduced ion migration in the perovskite and electronic transport in the polymer layers can be exploited to realize memristive functions. The device combines reversible, nonvolatile conductance modulation with large switching current ratios, high endurance, and long retention times. Using in situ scanning Kelvin probe microscopy and variable-temperature charge transport measurement, we correlate the collective effects of bias-induced and photoinduced ion migration with the heterosynaptic behavior observed in this hybrid memtransistor. The hybrid heterojunction channel concept is expected to be applicable to other material combinations making it a promising platform for deployment in innovative neuromorphic devices of the future.</p>
spellingShingle Ma, C
Chen, H
Yengel, E
Faber, H
Khan, JI
Tang, M-C
Li, R
Loganathan, K
Lin, Y
Zhang, W
Laquai, F
McCulloch, I
Anthopoulos, TD
Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
title Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
title_full Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
title_fullStr Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
title_full_unstemmed Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
title_short Printed memtransistor utilizing a hybrid perovskite/organic heterojunction channel
title_sort printed memtransistor utilizing a hybrid perovskite organic heterojunction channel
work_keys_str_mv AT mac printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT chenh printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT yengele printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT faberh printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT khanji printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT tangmc printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT lir printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT loganathank printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT liny printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT zhangw printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT laquaif printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT mccullochi printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel
AT anthopoulostd printedmemtransistorutilizingahybridperovskiteorganicheterojunctionchannel