TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics
<p style="text-align:justify;"> TNF is a multifunctional cytokine with profound and diverse effects on physiology and pathology. Identifying the molecular determinants underlying the functions and pathogenic effects of TNF is key to understanding its mechanisms of action and identif...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Wiley
2019
|
_version_ | 1826293189596676096 |
---|---|
author | Lu, W Wang, Y Zhang, Q Owen, S Green, M Ni, T Edwards, M Li, Y Zhang, L Harris, A Li, J Jackson, D Jiang, S |
author_facet | Lu, W Wang, Y Zhang, Q Owen, S Green, M Ni, T Edwards, M Li, Y Zhang, L Harris, A Li, J Jackson, D Jiang, S |
author_sort | Lu, W |
collection | OXFORD |
description | <p style="text-align:justify;"> TNF is a multifunctional cytokine with profound and diverse effects on physiology and pathology. Identifying the molecular determinants underlying the functions and pathogenic effects of TNF is key to understanding its mechanisms of action and identifying new therapeutic opportunities based on this important molecule. Previously, we showed that some evolutionarily‐conserved peptides derived from TNF could induce cell death (e.g. apoptosis and/or necrosis), a feature of immune defence mechanisms shared by many vertebrates. In this study, we demonstrated that necrosis‐inducing peptide P16 kills human glioblastoma cancer cells and primary human hepatoma or renal cancer cells isolated from patients who had not responded to standard treatments. Importantly we show that the necrosis‐inducing peptide P1516 significantly improves survival by inhibiting tumour metastasis in a 4T1 breast cancer syngeneic graft mouse model. As the lymphatic system is an important metastatic route in many cancers, we also tested the effect of TNF‐derived peptides on monolayers of primary human lymphatic endothelial cells (hDLEC) and found that they increased junctional permeability by inducing cytoskeletal reorganisation, gap junction formation and cell death. TEM imaging evidence, structural analysis and in vitro liposome leakage experiments strongly suggest that this killing is due to the cytolytic nature of these peptides. P1516 provides another example of a pro‐cytotoxic TNF peptide that likely functions as a cryptic necrotic factor released by TNF degradation. Its ability to inhibit tumour metastasis and improve survival may form the basis of a novel approach to cancer therapy.</p> |
first_indexed | 2024-03-07T03:26:16Z |
format | Journal article |
id | oxford-uuid:b9245601-afe7-41c5-a215-8cdcfa2019f2 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T03:26:16Z |
publishDate | 2019 |
publisher | Wiley |
record_format | dspace |
spelling | oxford-uuid:b9245601-afe7-41c5-a215-8cdcfa2019f22022-03-27T05:01:01ZTNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphaticsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:b9245601-afe7-41c5-a215-8cdcfa2019f2EnglishSymplectic Elements at OxfordWiley2019Lu, WWang, YZhang, QOwen, SGreen, MNi, TEdwards, MLi, YZhang, LHarris, ALi, JJackson, DJiang, S <p style="text-align:justify;"> TNF is a multifunctional cytokine with profound and diverse effects on physiology and pathology. Identifying the molecular determinants underlying the functions and pathogenic effects of TNF is key to understanding its mechanisms of action and identifying new therapeutic opportunities based on this important molecule. Previously, we showed that some evolutionarily‐conserved peptides derived from TNF could induce cell death (e.g. apoptosis and/or necrosis), a feature of immune defence mechanisms shared by many vertebrates. In this study, we demonstrated that necrosis‐inducing peptide P16 kills human glioblastoma cancer cells and primary human hepatoma or renal cancer cells isolated from patients who had not responded to standard treatments. Importantly we show that the necrosis‐inducing peptide P1516 significantly improves survival by inhibiting tumour metastasis in a 4T1 breast cancer syngeneic graft mouse model. As the lymphatic system is an important metastatic route in many cancers, we also tested the effect of TNF‐derived peptides on monolayers of primary human lymphatic endothelial cells (hDLEC) and found that they increased junctional permeability by inducing cytoskeletal reorganisation, gap junction formation and cell death. TEM imaging evidence, structural analysis and in vitro liposome leakage experiments strongly suggest that this killing is due to the cytolytic nature of these peptides. P1516 provides another example of a pro‐cytotoxic TNF peptide that likely functions as a cryptic necrotic factor released by TNF degradation. Its ability to inhibit tumour metastasis and improve survival may form the basis of a novel approach to cancer therapy.</p> |
spellingShingle | Lu, W Wang, Y Zhang, Q Owen, S Green, M Ni, T Edwards, M Li, Y Zhang, L Harris, A Li, J Jackson, D Jiang, S TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
title | TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
title_full | TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
title_fullStr | TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
title_full_unstemmed | TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
title_short | TNF‐derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
title_sort | tnf derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics |
work_keys_str_mv | AT luw tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT wangy tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT zhangq tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT owens tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT greenm tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT nit tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT edwardsm tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT liy tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT zhangl tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT harrisa tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT lij tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT jacksond tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics AT jiangs tnfderivedpeptidesinhibittumourgrowthandmetastasisthroughcytolyticeffectsontumourlymphatics |