Dust and gas in star-forming galaxies at z ~ 3: Extending galaxy uniformity to 11.5 billion years

We present millimetre dust emission measurements of two Lyman-break galaxies at z ∼ 3 and construct for the first time fully sampled infrared spectral energy distributions (SEDs), from mid-IR to the Rayleigh-Jeans tail, of individually detected, unlensed, UV-selected, main sequence (MS) galaxies at...

Celý popis

Podrobná bibliografie
Hlavní autoři: Magdis, G, Rigopoulou, D, Daddi, E, Bethermin, M, Feruglio, C, Sargent, M, Dannerbauer, H, Dickinson, M, Elbaz, D, Gomez Guijarro, C, Huang, J, Toft, S, Valentino, F
Médium: Journal article
Jazyk:English
Vydáno: EDP Sciences 2017
Popis
Shrnutí:We present millimetre dust emission measurements of two Lyman-break galaxies at z ∼ 3 and construct for the first time fully sampled infrared spectral energy distributions (SEDs), from mid-IR to the Rayleigh-Jeans tail, of individually detected, unlensed, UV-selected, main sequence (MS) galaxies at z = 3. The SED modelling of the two sources confirms previous findings, based on stacked ensembles, of an increasing mean radiation field (U) with redshift, consistent with a rapidly decreasing gas metallicity in z > 2 galaxies. Complementing our study with CO[J = 3 → 2] emission line observations, we have measured the molecular gas mass reservoir (M H 2 ) of the systems using three independent approaches: 1) CO line observations; 2) the dust to gas mass ratio vs. metallicity relation; and 3) a single band, dust emission flux on the Rayleigh-Jeans side of the SED. All techniques return consistent M H 2 estimates within a factor of two or less, yielding gas depletion time-scales (τ dep ≈ 0.35 Gyr) and gas-to-stellar mass ratios (M H 2 /M ∗ ≈ 0.5-1) for our z ∼ 3 massive MS galaxies. The overall properties of our galaxies are consistent with trends and relations established at lower redshifts, extending the apparent uniformity of star-forming galaxies over the last 11.5 billion years.