Decision problems for second-order holonomic sequences
We study decision problems for sequences which obey a second-order holonomic recurrence of the form f(n + 2) = P(n)f(n + 1) + Q(n)f(n) with rational polynomial coefficients, where P is non-constant, Q is non-zero, and the degree of Q is smaller than or equal to that of P. We show that existence of i...
Autori principali: | Neumann, E, Ouaknine, J, Worrell, J |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Schloss Dagstuhl – Leibniz Center for Informatics
2021
|
Documenti analoghi
-
On positivity and minimality for second-order holonomic sequences
di: Kenison, G, et al.
Pubblicazione: (2021) -
On rational recursion for holonomic sequences
di: Teguia Tabuguia, B, et al.
Pubblicazione: (2024) -
Decision Problems for Linear Recurrence Sequences.
di: Ouaknine, J, et al.
Pubblicazione: (2012) -
Topological and holonomic quantum computation based on second-order topological superconductors
di: Song-Bo Zhang, et al.
Pubblicazione: (2020-10-01) -
On the decidability of monadic second-order logic with arithmetic predicates
di: Berthé, V, et al.
Pubblicazione: (2024)