Exploiting sparsity in the coefficient matching conditions in sum-of-squares programming using ADMM
This letter introduces an efficient first-order method based on the alternating direction method of multipliers (ADMM) to solve semidefinite programs arising from sum-of-squares (SOS) programming. We exploit the sparsity of the coefficient matching conditions when SOS programs are formulated in the...
Auteurs principaux: | Zheng, Y, Fantuzzi, G, Papachristodoulou, A |
---|---|
Format: | Journal article |
Publié: |
IEEE
2017
|
Documents similaires
-
Fast ADMM for sum-of-squares programs using partial orthogonality
par: Zheng, Y, et autres
Publié: (2018) -
Fast ADMM for semidefinite programs with chordal sparsity
par: Zheng, Y, et autres
Publié: (2017) -
Decomposition and completion of sum-of-squares matrices
par: Zheng, Y, et autres
Publié: (2018) -
Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials
par: Zheng, Y, et autres
Publié: (2019) -
Fast ADMM for homogeneous self-dual embeddings of sparse SDPs
par: Zheng, Y, et autres
Publié: (2016)