Bayesian inference with certifiable adversarial robustness
We consider adversarial training of deep neural networks through the lens of Bayesian learning and present a principled framework for adversarial training of Bayesian Neural Networks (BNNs) with certifiable guarantees. We rely on techniques from constraint relaxation of non-convex optimisation probl...
Hlavní autoři: | Wicker, M, Laurenti, L, Patane, A, Chen, Z, Zhang, Z, Kwiatkowska, M |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Journal of Machine Learning Research
2021
|
Podobné jednotky
-
Adversarial robustness certification for Bayesian neural networks
Autor: Wicker, M, a další
Vydáno: (2024) -
Robustness guarantees for Bayesian inference with Gaussian processes
Autor: Cardelli, L, a další
Vydáno: (2019) -
Statistical guarantees for the robustness of Bayesian neural networks
Autor: Cardelli, L, a další
Vydáno: (2019) -
Adversarial robustness guarantees for Gaussian processes
Autor: Patane, A, a další
Vydáno: (2022) -
Probabilistic safety for bayesian neural networks
Autor: Wicker, M, a další
Vydáno: (2020)