MOCOnet: robust motion correction of cardiovascular magnetic resonance T1 mapping using convolutional neural networks
<br><strong>Background: </strong>Quantitative cardiovascular magnetic resonance (CMR) T1 mapping has shown promise for advanced tissue characterisation in routine clinical practise. However, T1 mapping is prone to motion artefacts, which affects its robustness and clinical interpre...
Main Authors: | Gonzales, RA, Zhang, Q, Papież, BW, Werys, K, Lukaschuk, E, Popescu, IA, Burrage, MK, Shanmuganathan, M, Ferreira, VM, Piechnik, SK |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Frontiers Media
2021
|
פריטים דומים
-
Fast and robust motion correction of cardiovascular magnetic resonance T1-mapping using data-driven convolutional neural networks for generalisability
מאת: Gonzales, RA, et al.
יצא לאור: (2022) -
Development of deep learning virtual native enhancement for gadolinium-free myocardial infarction and viability assessment
מאת: Zhang, Q, et al.
יצא לאור: (2022) -
Ensemble of deep convolutional neural networks with Monte Carlo dropout sampling for automated image segmentation quality control and robust deep learning using small datasets
מאת: Hann, E, et al.
יצא לאור: (2021) -
Standardized image post-processing of cardiovascular magnetic resonance T1-mapping reduces variability and improves accuracy and consistency in myocardial tissue characterization
מאת: Carapella, V, et al.
יצא לאור: (2019) -
Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy
מאת: Zhang, Q, et al.
יצא לאור: (2021)