Complementing machine learning-based structure predictions with native mass spectrometry
The advent of machine learning-based structure prediction algorithms such as AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate structural models for the entire cellular protein machinery into the reach of the scientific community. However, structure predictions of protein compl...
Autores principales: | Allison, TM, Degiacomi, MT, Marklund, EG, Jovine, L, Elofsson, A, Benesch, JLP, Landreh, M |
---|---|
Formato: | Journal article |
Lenguaje: | English |
Publicado: |
Wiley
2022
|
Ejemplares similares
-
Software requirements for the analysis and interpretation of native ion mobility mass spectrometry data
por: Allison, TM, et al.
Publicado: (2020) -
Computational strategies and challenges for using native ion mobility mass spectrometry in biophysics and structural biology
por: Allison, TM, et al.
Publicado: (2020) -
Ion mobility-mass spectrometry shows stepwise protein unfolding under alkaline conditions
por: Sahin, C, et al.
Publicado: (2021) -
Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations
por: Marklund, E, et al.
Publicado: (2019) -
Native Mass Spectrometry Captures the Conformational Plasticity of Proteins with Low-Complexity Domains
por: Hannah Osterholz, et al.
Publicado: (2025-01-01)