Power variation and time change
This paper provides limit distribution results for power variation, that is, sums of powers of absolute increments under nonequidistant subdivisions of time and for certain types of time-changed Brownian motion and α-stable processes. Special cases of these processes are stochastic volatility models...
Huvudupphovsmän: | Barndorff-Nielsen, O, Shephard, N |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Society for Industrial and Applied Mathematics
2006
|
Ämnen: |
Liknande verk
Liknande verk
-
Realised power variation and stochastic volatility models
av: Barndorff-Nielsen, O, et al.
Publicerad: (2003) -
Power and bipower variation with stochastic volatility and jumps
av: Barndorff-Nielsen, O, et al.
Publicerad: (2004) -
Power variation and stochastic volatility: a review and some new results
av: Barndorff-Nielsen, O, et al.
Publicerad: (2004) -
Estimating quadratic variation using realized variance
av: Barndorff-Nielsen, O, et al.
Publicerad: (2002) -
Econometrics of testing for jumps in financial economics using bipower variation
av: Barndorff-Nielsen, O, et al.
Publicerad: (2005)