The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.

BACKGROUND: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific a...

Full description

Bibliographic Details
Main Authors: Lakireddy, V, Lakkireddy, V, Bub, G, Baweja, P, Syed, A, Boutjdir, M, El-Sherif, N
Format: Journal article
Language:English
Published: 2006
_version_ 1797091379300532224
author Lakireddy, V
Lakkireddy, V
Bub, G
Baweja, P
Syed, A
Boutjdir, M
El-Sherif, N
author_facet Lakireddy, V
Lakkireddy, V
Bub, G
Baweja, P
Syed, A
Boutjdir, M
El-Sherif, N
author_sort Lakireddy, V
collection OXFORD
description BACKGROUND: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific arrhythmia in the in vivo heart. OBJECTIVES: The purpose of the study is to investigate the correlation between the kinetics of S-CaOs and arrhythmogenesis in the intact heart using an experimental model of ischemia/reperfusion (I/R). METHODS: Perfused Langendorff guinea pig (GP) hearts were subjected to global I/R (10-15 minutes/10-15 minutes). The heart was stained with a voltage-sensitive dye (RH237) and loaded with a Ca2+ indicator (Rhod-2 AM). Membrane voltage (Vm) and intracellular calcium transient (Ca(i)T) were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. S-CaOs were considered to arise from a localized focal site within the mapped surface when these preceded the associated membrane depolarizations by 2-15 ms. RESULTS: In 135 episodes of ventricular arrhythmias from 28 different GP experiments, 23 were linked to S-CaOs that were considered to arise from or close to the mapped epicardial window. Self-limited or sustained S-CaOs had a cycle length of 130-430 ms and could trigger propagated ventricular depolarizations. Self-limited S-CaOs that followed the basic beat action potential (AP)/Ca(i)T closely resembled phase 3 early afterdepolarizations. Fast S-CaOs could remain confined to a localized site (concealed) or exhibit varying conduction patterns. This could manifest as (1) an isolated premature beat (PB), bigeminal, or trigeminal rhythm; (2) ventricular tachycardia (VT) when a regular 2:1 conduction from the focal site develops; or (3) ventricular fibrillation (VF) when a complex conduction pattern results in wave break and reentrant excitation. CONCLUSIONS: The study examined, for the first time in the intact heart, the correlation between the kinetics of focal S-CaOs during I/R and arrhythmogenesis. S-CaOs may remain concealed or manifest as PBs, VT, or VF. A "benign looking" PB during I/R may represent "the tip of the iceberg" of an underlying potentially serious arrhythmic mechanism.
first_indexed 2024-03-07T03:32:10Z
format Journal article
id oxford-uuid:bb14119e-ee7e-4045-8216-4805ca62ee80
institution University of Oxford
language English
last_indexed 2024-03-07T03:32:10Z
publishDate 2006
record_format dspace
spelling oxford-uuid:bb14119e-ee7e-4045-8216-4805ca62ee802022-03-27T05:14:25ZThe kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:bb14119e-ee7e-4045-8216-4805ca62ee80EnglishSymplectic Elements at Oxford2006Lakireddy, VLakkireddy, VBub, GBaweja, PSyed, ABoutjdir, MEl-Sherif, N BACKGROUND: The correlation between spontaneous calcium oscillations (S-CaOs) and arrhythmogenesis has been investigated in a number of theoretical and experimental in vitro models. There is an obvious lack of studies that directly investigate how the kinetics of S-CaOs correlates with a specific arrhythmia in the in vivo heart. OBJECTIVES: The purpose of the study is to investigate the correlation between the kinetics of S-CaOs and arrhythmogenesis in the intact heart using an experimental model of ischemia/reperfusion (I/R). METHODS: Perfused Langendorff guinea pig (GP) hearts were subjected to global I/R (10-15 minutes/10-15 minutes). The heart was stained with a voltage-sensitive dye (RH237) and loaded with a Ca2+ indicator (Rhod-2 AM). Membrane voltage (Vm) and intracellular calcium transient (Ca(i)T) were simultaneously recorded with an optical mapping system of two 16 x 16 photodiode arrays. S-CaOs were considered to arise from a localized focal site within the mapped surface when these preceded the associated membrane depolarizations by 2-15 ms. RESULTS: In 135 episodes of ventricular arrhythmias from 28 different GP experiments, 23 were linked to S-CaOs that were considered to arise from or close to the mapped epicardial window. Self-limited or sustained S-CaOs had a cycle length of 130-430 ms and could trigger propagated ventricular depolarizations. Self-limited S-CaOs that followed the basic beat action potential (AP)/Ca(i)T closely resembled phase 3 early afterdepolarizations. Fast S-CaOs could remain confined to a localized site (concealed) or exhibit varying conduction patterns. This could manifest as (1) an isolated premature beat (PB), bigeminal, or trigeminal rhythm; (2) ventricular tachycardia (VT) when a regular 2:1 conduction from the focal site develops; or (3) ventricular fibrillation (VF) when a complex conduction pattern results in wave break and reentrant excitation. CONCLUSIONS: The study examined, for the first time in the intact heart, the correlation between the kinetics of focal S-CaOs during I/R and arrhythmogenesis. S-CaOs may remain concealed or manifest as PBs, VT, or VF. A "benign looking" PB during I/R may represent "the tip of the iceberg" of an underlying potentially serious arrhythmic mechanism.
spellingShingle Lakireddy, V
Lakkireddy, V
Bub, G
Baweja, P
Syed, A
Boutjdir, M
El-Sherif, N
The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.
title The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.
title_full The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.
title_fullStr The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.
title_full_unstemmed The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.
title_short The kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia/reperfusion.
title_sort kinetics of spontaneous calcium oscillations and arrhythmogenesis in the in vivo heart during ischemia reperfusion
work_keys_str_mv AT lakireddyv thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT lakkireddyv thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT bubg thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT bawejap thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT syeda thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT boutjdirm thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT elsherifn thekineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT lakireddyv kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT lakkireddyv kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT bubg kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT bawejap kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT syeda kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT boutjdirm kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion
AT elsherifn kineticsofspontaneouscalciumoscillationsandarrhythmogenesisintheinvivoheartduringischemiareperfusion