Large area hole transporter deposition in efficient solid-state dye-sensitized solar cell mini-modules

We demonstrate the viability of large area processing for solid-state dye-sensitized solar cells. We fabricate mini-modules comprising two photoactive regions connected in series, of 8 cm2 total active area, using the technique of doctor blade coating to deposit the hole-transporter material. For th...

Full description

Bibliographic Details
Main Authors: Hey, A, Snaith, H
Format: Journal article
Language:English
Published: 2013
Description
Summary:We demonstrate the viability of large area processing for solid-state dye-sensitized solar cells. We fabricate mini-modules comprising two photoactive regions connected in series, of 8 cm2 total active area, using the technique of doctor blade coating to deposit the hole-transporter material. For the optimized protocol we lose only 25% of the power conversion efficiency when compared to standard test devices which are only 0.12 cm2. We estimate pore-filling fractions using reflectance spectroscopy, showing that device performance is linked to changes in the volume of the mesoporous TiO 2 photoanode infiltrated with hole-transporter as deposition temperature is varied. © 2013 AIP Publishing LLC.