Randomized neural networks for preference learning with physiological data
The paper discusses the use of randomized neural networks to learn a complete ordering between samples of heart-rate variability data by relying solely on partial and subject-dependent information concerning pairwise relations between samples. We confront two approaches, i.e. Extreme Learning Machin...
Hlavní autoři: | Bacciu, D, Colombo, M, Morelli, D, Plans, D |
---|---|
Médium: | Journal article |
Vydáno: |
Elsevier
2018
|
Podobné jednotky
-
Profiling the propagation of error from PPG to HRV features in a wearable physiological-monitoring device
Autor: Morelli, D, a další
Vydáno: (2017) -
Use of a biofeedback breathing app to augment poststress physiological recovery: randomized pilot study
Autor: Plans, D, a další
Vydáno: (2019) -
Profiling the propagation of error from PPG to HRV features in a wearable physiological-monitoring device
Autor: Davide Morelli, a další
Vydáno: (2018-05-01) -
Development of Digitally Obtainable 10-Year Risk Scores for Depression and Anxiety in the General Population
Autor: Davide Morelli, a další
Vydáno: (2021-08-01) -
Multitask learning deep neural networks to combine revealed and stated preference data
Autor: Wang, Shenhao, a další
Vydáno: (2020)