On orthogonal tensors and best rank-one approximation ratio
As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m × n matrix with m ≤ n is 1/%m and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Froben...
Auteurs principaux: | Li, Z, Nakatsukasa, Y, Soma, T, Uschmajew, A |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Society for Industrial and Applied Mathematics
2018
|
Documents similaires
-
Finding a low-rank basis in a matrix subspace
par: Nakatsukasa, Y, et autres
Publié: (2016) -
Error localization of best $L_{1}$ polynomial approximants
par: Nakatsukasa, Y, et autres
Publié: (2021) -
Low-rank approximation of parameter-dependent matrices via CUR decomposition
par: Park, T, et autres
Publié: (2025) -
Orthogonal Tensor Recovery Based on Non-Convex Regularization and Rank Estimation
par: Xixiang Chen, et autres
Publié: (2024-01-01) -
Tensor Completion via Smooth Rank Function Low-Rank Approximate Regularization
par: Shicheng Yu, et autres
Publié: (2023-08-01)