On orthogonal tensors and best rank-one approximation ratio
As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m × n matrix with m ≤ n is 1/%m and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Froben...
Asıl Yazarlar: | Li, Z, Nakatsukasa, Y, Soma, T, Uschmajew, A |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Society for Industrial and Applied Mathematics
2018
|
Benzer Materyaller
-
Finding a low-rank basis in a matrix subspace
Yazar:: Nakatsukasa, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Error localization of best $L_{1}$ polynomial approximants
Yazar:: Nakatsukasa, Y, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Low-rank approximation of parameter-dependent matrices via CUR decomposition
Yazar:: Park, T, ve diğerleri
Baskı/Yayın Bilgisi: (2025) -
Orthogonal Tensor Recovery Based on Non-Convex Regularization and Rank Estimation
Yazar:: Xixiang Chen, ve diğerleri
Baskı/Yayın Bilgisi: (2024-01-01) -
Tensor Completion via Smooth Rank Function Low-Rank Approximate Regularization
Yazar:: Shicheng Yu, ve diğerleri
Baskı/Yayın Bilgisi: (2023-08-01)