Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Κύριοι συγγραφείς: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Association for Uncertainty in Artificial Intelligence
2017
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Bayesian kernel two-sample testing
ανά: Zhang, Q, κ.ά.
Έκδοση: (2022) -
Large-scale kernel methods for independence testing
ανά: Zhang, Q, κ.ά.
Έκδοση: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
ανά: Ton, J, κ.ά.
Έκδοση: (2018) -
Bayesian approaches to distribution regression
ανά: Law, H, κ.ά.
Έκδοση: (2018) -
Bayesian learning of kernel embeddings
ανά: Filippi, S, κ.ά.
Έκδοση: (2016)