Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Päätekijät: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
Association for Uncertainty in Artificial Intelligence
2017
|
Samankaltaisia teoksia
-
Bayesian kernel two-sample testing
Tekijä: Zhang, Q, et al.
Julkaistu: (2022) -
Large-scale kernel methods for independence testing
Tekijä: Zhang, Q, et al.
Julkaistu: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
Tekijä: Ton, J, et al.
Julkaistu: (2018) -
Bayesian approaches to distribution regression
Tekijä: Law, H, et al.
Julkaistu: (2018) -
Bayesian learning of kernel embeddings
Tekijä: Filippi, S, et al.
Julkaistu: (2016)