Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Main Authors: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
Association for Uncertainty in Artificial Intelligence
2017
|
פריטים דומים
-
Bayesian kernel two-sample testing
מאת: Zhang, Q, et al.
יצא לאור: (2022) -
Large-scale kernel methods for independence testing
מאת: Zhang, Q, et al.
יצא לאור: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
מאת: Ton, J, et al.
יצא לאור: (2018) -
Bayesian approaches to distribution regression
מאת: Law, H, et al.
יצא לאור: (2018) -
Bayesian learning of kernel embeddings
מאת: Filippi, S, et al.
יצא לאור: (2016)