Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Үндсэн зохиолчид: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Association for Uncertainty in Artificial Intelligence
2017
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Bayesian kernel two-sample testing
-н: Zhang, Q, зэрэг
Хэвлэсэн: (2022) -
Large-scale kernel methods for independence testing
-н: Zhang, Q, зэрэг
Хэвлэсэн: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
-н: Ton, J, зэрэг
Хэвлэсэн: (2018) -
Bayesian approaches to distribution regression
-н: Law, H, зэрэг
Хэвлэсэн: (2018) -
Bayesian learning of kernel embeddings
-н: Filippi, S, зэрэг
Хэвлэсэн: (2016)