Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Автори: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Association for Uncertainty in Artificial Intelligence
2017
|
Схожі ресурси
Схожі ресурси
-
Bayesian kernel two-sample testing
за авторством: Zhang, Q, та інші
Опубліковано: (2022) -
Large-scale kernel methods for independence testing
за авторством: Zhang, Q, та інші
Опубліковано: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
за авторством: Ton, J, та інші
Опубліковано: (2018) -
Bayesian approaches to distribution regression
за авторством: Law, H, та інші
Опубліковано: (2018) -
Bayesian learning of kernel embeddings
за авторством: Filippi, S, та інші
Опубліковано: (2016)