Feature-to-feature regression for a two-step conditional independence test
The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...
Những tác giả chính: | Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Association for Uncertainty in Artificial Intelligence
2017
|
Những quyển sách tương tự
-
Bayesian kernel two-sample testing
Bằng: Zhang, Q, et al.
Được phát hành: (2022) -
Large-scale kernel methods for independence testing
Bằng: Zhang, Q, et al.
Được phát hành: (2017) -
Spatial mapping with Gaussian processes and nonstationary Fourier features
Bằng: Ton, J, et al.
Được phát hành: (2018) -
Bayesian approaches to distribution regression
Bằng: Law, H, et al.
Được phát hành: (2018) -
Bayesian learning of kernel embeddings
Bằng: Filippi, S, et al.
Được phát hành: (2016)