Feature-to-feature regression for a two-step conditional independence test

The algorithms for causal discovery and more broadly for learning the structure of graphical models require well calibrated and consistent conditional independence (CI) tests. We revisit the CI tests which are based on two-step procedures and involve regression with subsequent (unconditional) indepe...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Zhang, Q, Filippi, S, Flaxman, S, Sejdinovic, D
Định dạng: Conference item
Ngôn ngữ:English
Được phát hành: Association for Uncertainty in Artificial Intelligence 2017