Exact scaling functions for self-avoiding loops and branched polymers
It is shown that a recently conjectured form for the critical scaling function for planar self-avoiding polygons weighted by their perimeter and area also follows from an exact renormalization group flow into the branched polymer problem, combined with the dimensional reduction arguments of Parisi a...
Main Author: | |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2001
|
Summary: | It is shown that a recently conjectured form for the critical scaling function for planar self-avoiding polygons weighted by their perimeter and area also follows from an exact renormalization group flow into the branched polymer problem, combined with the dimensional reduction arguments of Parisi and Sourlas. The result is generalized to higher-order multicritical points, yielding exact values for all their critical exponents and exact forms for the associated scaling functions. |
---|