Exact scaling functions for self-avoiding loops and branched polymers

It is shown that a recently conjectured form for the critical scaling function for planar self-avoiding polygons weighted by their perimeter and area also follows from an exact renormalization group flow into the branched polymer problem, combined with the dimensional reduction arguments of Parisi a...

Full description

Bibliographic Details
Main Author: Cardy, J
Format: Journal article
Language:English
Published: 2001
Description
Summary:It is shown that a recently conjectured form for the critical scaling function for planar self-avoiding polygons weighted by their perimeter and area also follows from an exact renormalization group flow into the branched polymer problem, combined with the dimensional reduction arguments of Parisi and Sourlas. The result is generalized to higher-order multicritical points, yielding exact values for all their critical exponents and exact forms for the associated scaling functions.