Self-supervised video representation learning by uncovering spatio-temporal statistics
This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spa...
Main Authors: | Wang, J, Jiao, J, Bao, L, He, S, Liu, W, Liu, YH |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
IEEE
2021
|
Lignende værker
-
Improving self-supervision in video representation learning
af: Liu, Hualin
Udgivet: (2021) -
Self-supervised contrastive video-speech representation learning for ultrasound
af: Jiao, J, et al.
Udgivet: (2020) -
Self-supervised video representation learning
af: Han, T
Udgivet: (2022) -
Self-supervised representation learning for ultrasound video
af: Jaio, J, et al.
Udgivet: (2020) -
Self-supervised co-training for video representation learning
af: Han, T, et al.
Udgivet: (2020)