Deep variational reinforcement learning for POMDPs
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this...
Main Authors: | Igl, M, Zintgraf, L, Le, T, Wood, F, Whiteson, S |
---|---|
פורמט: | Conference item |
יצא לאור: |
Journal of Machine Learning Research
2018
|
פריטים דומים
-
Exploration in approximate hyper-state space for meta reinforcement learning
מאת: Zintgraf, L, et al.
יצא לאור: (2021) -
Reinforcement learning with limited reinforcement: Using Bayes risk for active learning in POMDPs
מאת: Pineau, Joelle, et al.
יצא לאור: (2017) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
מאת: Zintgraf, L, et al.
יצא לאור: (2020) -
Multi-Agent Active Perception Based on Reinforcement Learning and POMDP
מאת: Tarik Selimovic, et al.
יצא לאור: (2024-01-01) -
TreeQN and ATreeC: differentiable tree planning for deep reinforcement learning
מאת: Farquhar, G, et al.
יצא לאור: (2018)