Deep variational reinforcement learning for POMDPs
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this...
Հիմնական հեղինակներ: | Igl, M, Zintgraf, L, Le, T, Wood, F, Whiteson, S |
---|---|
Ձևաչափ: | Conference item |
Հրապարակվել է: |
Journal of Machine Learning Research
2018
|
Նմանատիպ նյութեր
-
Exploration in approximate hyper-state space for meta reinforcement learning
: Zintgraf, L, և այլն
Հրապարակվել է: (2021) -
Reinforcement learning with limited reinforcement: Using Bayes risk for active learning in POMDPs
: Pineau, Joelle, և այլն
Հրապարակվել է: (2017) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
: Zintgraf, L, և այլն
Հրապարակվել է: (2020) -
Multi-Agent Active Perception Based on Reinforcement Learning and POMDP
: Tarik Selimovic, և այլն
Հրապարակվել է: (2024-01-01) -
TreeQN and ATreeC: differentiable tree planning for deep reinforcement learning
: Farquhar, G, և այլն
Հրապարակվել է: (2018)