Deep variational reinforcement learning for POMDPs
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this...
Үндсэн зохиолчид: | Igl, M, Zintgraf, L, Le, T, Wood, F, Whiteson, S |
---|---|
Формат: | Conference item |
Хэвлэсэн: |
Journal of Machine Learning Research
2018
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Exploration in approximate hyper-state space for meta reinforcement learning
-н: Zintgraf, L, зэрэг
Хэвлэсэн: (2021) -
Reinforcement learning with limited reinforcement: Using Bayes risk for active learning in POMDPs
-н: Pineau, Joelle, зэрэг
Хэвлэсэн: (2017) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
-н: Zintgraf, L, зэрэг
Хэвлэсэн: (2020) -
Multi-Agent Active Perception Based on Reinforcement Learning and POMDP
-н: Tarik Selimovic, зэрэг
Хэвлэсэн: (2024-01-01) -
TreeQN and ATreeC: differentiable tree planning for deep reinforcement learning
-н: Farquhar, G, зэрэг
Хэвлэсэн: (2018)