Deep variational reinforcement learning for POMDPs
Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this...
Автори: | Igl, M, Zintgraf, L, Le, T, Wood, F, Whiteson, S |
---|---|
Формат: | Conference item |
Опубліковано: |
Journal of Machine Learning Research
2018
|
Схожі ресурси
Схожі ресурси
-
Exploration in approximate hyper-state space for meta reinforcement learning
за авторством: Zintgraf, L, та інші
Опубліковано: (2021) -
Reinforcement learning with limited reinforcement: Using Bayes risk for active learning in POMDPs
за авторством: Pineau, Joelle, та інші
Опубліковано: (2017) -
VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
за авторством: Zintgraf, L, та інші
Опубліковано: (2020) -
Multi-Agent Active Perception Based on Reinforcement Learning and POMDP
за авторством: Tarik Selimovic, та інші
Опубліковано: (2024-01-01) -
TreeQN and ATreeC: differentiable tree planning for deep reinforcement learning
за авторством: Farquhar, G, та інші
Опубліковано: (2018)