Learning logic programs by discovering where not to search
The goal of inductive logic programming (ILP) is to search for a hypothesis that generalises training examples and background knowledge (BK). To improve performance, we introduce an approach that, before searching for a hypothesis, first discovers "where not to search". We use given BK to...
Main Authors: | , |
---|---|
Format: | Conference item |
Language: | English |
Published: |
Association for the Advancement of Artificial Intelligence
2023
|
Summary: | The goal of inductive logic programming (ILP) is to search for a hypothesis that generalises training examples and background knowledge (BK). To improve performance, we introduce an approach that, before searching for a hypothesis, first discovers "where not to search". We use given BK to discover constraints on hypotheses, such as that a number cannot be both even and odd. We use the constraints to bootstrap a constraint-driven ILP system. Our experiments on multiple domains (including program synthesis and inductive general game playing) show that our approach can (i) substantially reduce learning times by up to 97%, and (ii) can scale to domains with millions of facts. |
---|