Pathwise integration with respect to paths of finite quadratic variation
We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...
मुख्य लेखकों: | Ananova, A, Cont, R |
---|---|
स्वरूप: | Journal article |
प्रकाशित: |
Elsevier
2016
|
समान संसाधन
-
On pathwise quadratic variation for càdlàg functions
द्वारा: Chiu, H, और अन्य
प्रकाशित: (2018) -
Pathwise integration and change of variable formulas for continuous
paths with arbitrary regularity
द्वारा: Cont, R, और अन्य
प्रकाशित: (2019) -
Quadratic variation and quadratic roughness
द्वारा: Cont, R, और अन्य
प्रकाशित: (2022) -
Existence of Lévy's area and pathwise integration
द्वारा: Imkeller, P, और अन्य
प्रकाशित: (2015) -
Local times for typical price paths and pathwise Tanaka formulas
द्वारा: Perkowski, N, और अन्य
प्रकाशित: (2016)