Pathwise integration with respect to paths of finite quadratic variation
We study a pathwise integral with respect to paths of finite quadratic variation, defined as the limit of non-anticipative Riemann sums for gradient-type integrands. We show that the integral satisfies a pathwise isometry property, analogous to the well-known Ito isometry for stochastic integrals. T...
المؤلفون الرئيسيون: | Ananova, A, Cont, R |
---|---|
التنسيق: | Journal article |
منشور في: |
Elsevier
2016
|
مواد مشابهة
-
On pathwise quadratic variation for càdlàg functions
حسب: Chiu, H, وآخرون
منشور في: (2018) -
Pathwise integration and change of variable formulas for continuous
paths with arbitrary regularity
حسب: Cont, R, وآخرون
منشور في: (2019) -
Quadratic variation and quadratic roughness
حسب: Cont, R, وآخرون
منشور في: (2022) -
Existence of Lévy's area and pathwise integration
حسب: Imkeller, P, وآخرون
منشور في: (2015) -
Local times for typical price paths and pathwise Tanaka formulas
حسب: Perkowski, N, وآخرون
منشور في: (2016)